Case Study: Application of HDPE Geomembrane for Seepage Control in a Reservoir

2025/03/11 14:00

Case Study: Application of HDPE geomembrane for Seepage Control in a Reservoir


**Project Overview**  

**Location**: Arid region with high agricultural water demand (hypothetical site)  

**Objective**: Construct a 100,000 m³ reservoir to address irrigation water shortages.  

**Challenge**: The site’s geology comprised loose sandy soil (permeability coefficient: 1×10⁻³ cm/s), requiring cost-effective seepage control. HDPE Geomembrane was 

selected over conventional concrete lining due to its flexibility, durability, and 40% lower construction cost.


---


 Design Specifications

1. **Material Selection**  

- **Primary Barrier**: 1.5mm-thick HDPE geomembrane  

  - Properties:  

    - Tensile strength: ≥25 kN/m (ASTM D6693)  

    - Permeability: ≤1×10⁻¹³ cm/s (ASTM E96)  

    - Carbon black content: 2-3% for UV resistance  

- **Protection Layers**:  

  - Nonwoven geotextile (300 g/m²) above and below the geomembrane  

  - 50 cm compacted clay layer (k ≤1×10⁻⁶ cm/s) as subgrade  

  - 30 cm granular soil cover for mechanical protection  


2. **Liner System Configuration**  

- Composite liner system from bottom to top:  

  1. Compacted clay layer (30 cm)  

  2. Lower geotextile  

  3. HDPE geomembrane (primary barrier)  

  4. Upper geotextile  

  5. Soil cover layer (50 cm)  

- Slope design: 1:2.5 (H:V) with 1.5m-deep anchor trenches at edges.


Construction Process  

1. **Subgrade Preparation**  

- Removal of sharp objects and compaction to 95% Proctor density.  

- Laser-guided grading to achieve ≤0.5% surface unevenness.  


2. **Geomembrane Installation**  

- **Welding**: Dual-track thermal fusion welding (wedge method) with 10cm overlap.  

  - Temperature control: 280-320°C  

  - Seam testing: 100% air pressure testing (0.2 MPa, 5-minute hold)  

- **Slope Installation**: Fan-fold deployment with minimal wrinkles.  


3. **Quality Assurance**  

- **Defect Detection**:  

  - Spark testing (15 kV) for pinholes  

  - Vacuum box testing (50 kPa) for seams  

- **Acceptance Criteria**: ≤3 defects per 10,000 m² (GRI GM13 standard).


Performance Evaluation

1. **Short-Term Testing**  

- **Water Tightness Test**:  

  - Initial 72-hour water loss: 0.3 mm/day (<1 mm/day allowable)  

  - Electrical leak detection survey: Zero significant leaks  


2. **Long-Term Monitoring**  

- **Projected Service Life**: >30 years (based on Arrhenius modeling of oxidative induction time)  

- **Economic Benefits**:  

  - 60% reduction in maintenance costs vs. concrete lining  

  - Annual water savings: 22,000 m³  


Key Lessons Learned

1. **Critical Success Factors**:  

   - Strict control of welding parameters (temperature/speed)  

   - Use of protective geotextiles prevented puncture damage  


2. **Risk Mitigation Measures**:  

   - Installation of leak detection layer (optional sand layer with moisture sensors)  

   - 10% excess material allowance for thermal contraction/expansion  


Conclusion

This project demonstrates HDPE geomembranes as a technically robust and economically viable solution for reservoir seepage control. The system achieved zero-leak 

performance while reducing construction time by 35% compared to traditional methods. The success highlights the importance of material selection, precision installation, 

and rigorous QA/QC protocols.


Appendices

- ASTM test certificates for HDPE geomembrane  

- As-built drawings of anchor trench details  

- Welding procedure qualification records (WPQR)  


This template complies with international geosynthetics engineering standards (ISO 10318, ASTM) and can be adapted with project-specific data. For enhanced credibility, 

include third-party inspection reports and 5-year performance monitoring data.

Case Study: Application of HDPE Geomembrane for Seepage Control in a Reservoir Case Study: Application of HDPE Geomembrane for Seepage Control in a Reservoir Case Study: Application of HDPE Geomembrane for Seepage Control in a Reservoir